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Absrracf: The significance of electrostatic effects on the origin of n-facial stereoselectivity 

in nucleophilic additions to &r-unsaturated carbonyl systems was shown through 

theoretical studies (ah initio MO calculations of transition structures for NaH + 

HCOCH$I=CH) and experimental results (M(BH,& reduction of PhCOCH(CH3)R (M = Na. Zn, 

Cd; R = C2H5, CH-CH2. CrCH)). 

The cause of n-facial stereoselectivity in nucleophilic additions to carbonyl 

compounds is still a matter of debate.1 Recent ongoing discussion has emphasized 
the significance of electrostatic effects in nucleophilic additions to hetero-atom 
substituted ketones.2 In this paper, electrostatic effects are demonstrated to be also 
dominant factors in nucleophilic additions to g,y-unsaturated carbonyl systems 

where high stereoselectivities were previously reported.3 
Transition structures for NaH addition to 3-butynal were computed (Figure I).4 

The results include two significant findings. First, the most favored conformation A 
has an inside ethynyl group.5 This structure is apparently stabilized by electrostatic 
attraction between Na+ and the ethynyl group since the Na+ is skewed towards the 
ethynyl group by 20.7’ (the Na+**=C-C distance: 2.9 A). This accords with the 
Paddon-Row’s results that deals with LiH additions to 2-fluoropropana1.h Second, 
removal of Na+ caused dramatic change in relative energy among the three 
conformations. Surprisingly, the conformation A is highest (HF/6-3lG*) or second 
highest (MP2/6-3lG*) in relative energy, and the most stable alternative is B having 
an anti ethynyl group. In the absence of Na+, A is destabilized by electrostatic 
repulsion between n-electrons of the ethynyl group and the negative charge mainly 

lying on Hl and 03; the repulsion was most reduced in anti orientation of the 
ethynyl group (B). 

5139 



5140 

P inside 

Qk,clo,,,,, = 20.7 b ,-a = -2.3 

A 6 

w 0.00 3.24 
@I 0.00 2.11 
(a 0.00 4.00 

(d) 3.72 0.00 
C) 3.24 0.00 

bt-nm = -3.2 

C 

4.01 

2.26 
557 

3.34 
4.26 

Figure 1. HFV3-21G optimized transition sttuchues for NaH attack on HC!WH~=CH. Relative 
energy in kcal mol-1: (a) 3-21G; (b) 6-31G*//3-21G; (c) MP2/6-31G*/&210; (d) 6-31GV/3-210 
(No+ removed); (e) MI%-31G*//3-21G(Na+ removed). Bond leogths in A and angles in degrees. 

These computed results were consistent with the x-facial stereoselectivity in 
NaBH4 reduction of ketones 1. For la,b (R = Et, CH=CH2, respectively), 

predominant formation of R*,R* isomers (2a,b) is explained by the Pelkin-Anh 
model6 where the most bulky substituent (Et or vinyl) occupies the anti position. 
Interestingly, the ketone lc (R = C-CH) gave R*,R* isomer 2c with the highest 

diastereoselectivity (91 : 9).7 This result means that the ethynyl group is oriented at 
the anti position in the Felkin-Anh transition state in spite of its little steric 
demand.9 Thus, the observed diastereoselectivity is not ascribed to steric effects but 
most likely to electrostatic repulsion between the x-electrons and negative charge 

lying on the hydride and the carbonyl oxygen. This agrees with the selectivity order 
lc > lb since the x-electron density is lc > lb. Since the chelation control in NaBH4 

reduction in methanol is negligible, to the transition state is closely referred to the 
transition structure B that has the lowest relative energy in the absence of Na+. 
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More significantly, the Na****C-C attraction in the conformation A suggests the 
possibility of chelation-controlled reduction of 8,v-unsaturated ketones. This was 
realized with softer counter ions (Zn2+, Cd2+) which have higher affinity with x- 

bases. Thus, the x-facial stereoselection in the reduction of lb was reversed when 

Cd(BH,t)21* was employed; this unusual selectivity is attributable to the transition 

state in which Cd2+ is chelated by both uubonyl oxygen and the x system. 
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Previously, (UC-u)t-oc_c(&i)* interaction has been considered for the origin of 
high stereoselectivity in the nucleophilic additions to &y-unsaturated carbonyl 

compounds.k However, this interaction does not seem significant since it must 

stabilize the anti conformers regardless of the presence of Na+. In addition, the 
dihedral angle Hl-C2-C!6-C7 in conformation B is significantly deviated from 180°, 
most favored angle for the u-u* interaction, and is comparable to those observed for 
the NaH + HCOCH2CH212 where such interaction is not important. 

An interpretation based on xcro*-xc~* interactions has been also tentatively 

proposed.20 However, the transition structures for the reaction of NaH with 3- 

butenal showed that this interaction does not work effectively. Two conformers D 

and E were found for the transition structures with the anti ethenyl group Cpigure 2). 
Although the xCto* orbital can effectively mix with the xczc* orbital in D, this 

conformation has higher energy than E in which the two YP orbitals hardly overlap 

each other. 
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Figure 2. HFV3-21G optimized transition structurea for NaH attack on HCOCH2CH==CH2. 

pond lengths in A, angles in degrees. HF/3-210 relative energies in kcal mol-*. 
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